
Transformers

An Intuitive Understanding

Sandeep Arora : Principal Architect
https://www.linkedin.com/in/sandeeparora/

Attention is All You Need

The Transformer model is based on the 2017 Google paper titled “Attention is all you need”

https://arxiv.org/pdf/1706.03762

Transformer
The paper introduced a new deep learning
architecture known as the transformer

So, Relax
It is just a complex software program. You
don’t need to understand every detail of its
inner workings. To begin, get an intuitive,
high-level understanding.

Architecture

https://arxiv.org/pdf/1706.03762
https://www.youtube.com/watch?v=PXc_SlnT2g0

Transformer
With transformer architecture, now you can enter the entire sentence at once.
• The transformer takes the entire sentence as input
• It will understand it using the encoder block, and then generate the output

using the decoder, capturing the full context of the sentence in a parallel
and efficient way.

Transformer

Intuitive Understandings
• Let us first learn how it works when you use (inference) it
• Then we will learn how it is trained
• Along the way we will learn important concepts

The model has two main parts:
Encoder:
Understands the input and creates feature representations.
Decoder:
Uses those features to generate the output sequence.

Transformer -Encoder

What is the Encoder? What does it do?
The encoder takes the entire input sentence and builds a rich understanding
of it. The understanding is stored in a matrix format

How does it work? Say I enter “When was Rome Built?”
• The input sentence is broken into tokens → ["When", "was", "Rome", "built", "?"]
• Each token is converted into a vector using a word embedding
• A positional embedding is added to each token to tell the model the order (e.g., "Rome"

came after "was")
• The combined vectors go into a stack of Nx encoder blocks (Nx = repeated N times, like 6

or 12 layers)
• In each block, the model uses multi-head attention and feed-forward networks to build

a deep understanding of each word in context
• The final output of the encoder layer is a set of context-rich embeddings (vectors) — one

for each input token — capturing the meaning of each word in relation to the whole
sentence.

https://arxiv.org/pdf/1706.03762

Transformer -Encoder

What is the Encoder? What does it do?
The encoder takes the entire input sentence and builds a rich understanding
of it. The understanding is stored in a matrix format

How does it work? Say I enter “When was Rome Built?”
• The input sentence is broken into tokens → ["When", "was", "Rome", "built", "?"]
• Each token is converted into a vector using a word embedding
• A positional embedding is added to each token to tell the model the order (e.g., "Rome"

came after "was")
• The combined vectors go into a stack of Nx encoder blocks (Nx = repeated N times, like 6

or 12 layers)
• In each block, the model uses multi-head attention and feed-forward networks to build

a deep understanding of each word in context
• The final output of the encoder layer is a set of context-rich embeddings (vectors) — one

for each input token — capturing the meaning of each word in relation to the whole
sentence.

https://arxiv.org/pdf/1706.03762

Transformer -Decoder

What is the Decoder? What does it do?
A decoder is the part of the Transformer that generates the output (like a
translated sentence or answer), one token at a time.

https://arxiv.org/pdf/1706.03762

Transformer -Decoder

How does the decoder work? Say I enter “When was Rome Built?”
• The encoder processes the input and outputs context-rich embeddings (one per input token).
• The decoder starts with a special start token <START> as input.
• It uses masked multi-head attention to focus only on tokens already generated, not future ones.
• Then it performs cross-attention to read relevant info from the encoder output (e.g., focus on "Rome" and "built").
• Passes through layers that help it understand what to say next based on input from encoder and previous output.
• It predicts the next word (like "Rome"), adds it to the sentence, and uses that as input to guess the next one.
• Then it predicts the next word (like "was") based on what it's generated so far — and continues this process until the answer

is complete.

https://arxiv.org/pdf/1706.03762

Encoder or Decoder models

Generally speaking below apply but this is not fixed.

Examples

Appendix

https://community.openai.com/t/is-gpt-group-of-models-decoder-only-model/286586/2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

