

Using LLMs in business

to Fine-tune *or* Prompt *or* Distill *or* RAG

Sandeep Arora

www.trilyen.com

LLMs in Business

LLMs are trained on internet scale data & have knowledge of the world. But these LLMs do not understand your business or domain data.

Using LLMs to solve your own business problems can be challenging. Take for example a Law Firm which wants to create a Legal AI chatbot using its knowledge and data. This can be hard despite available tools and frameworks. There is no one-stop shop for this. Here is a framework on how to adapt LLMs to solve business problems you care about.

Law Firm

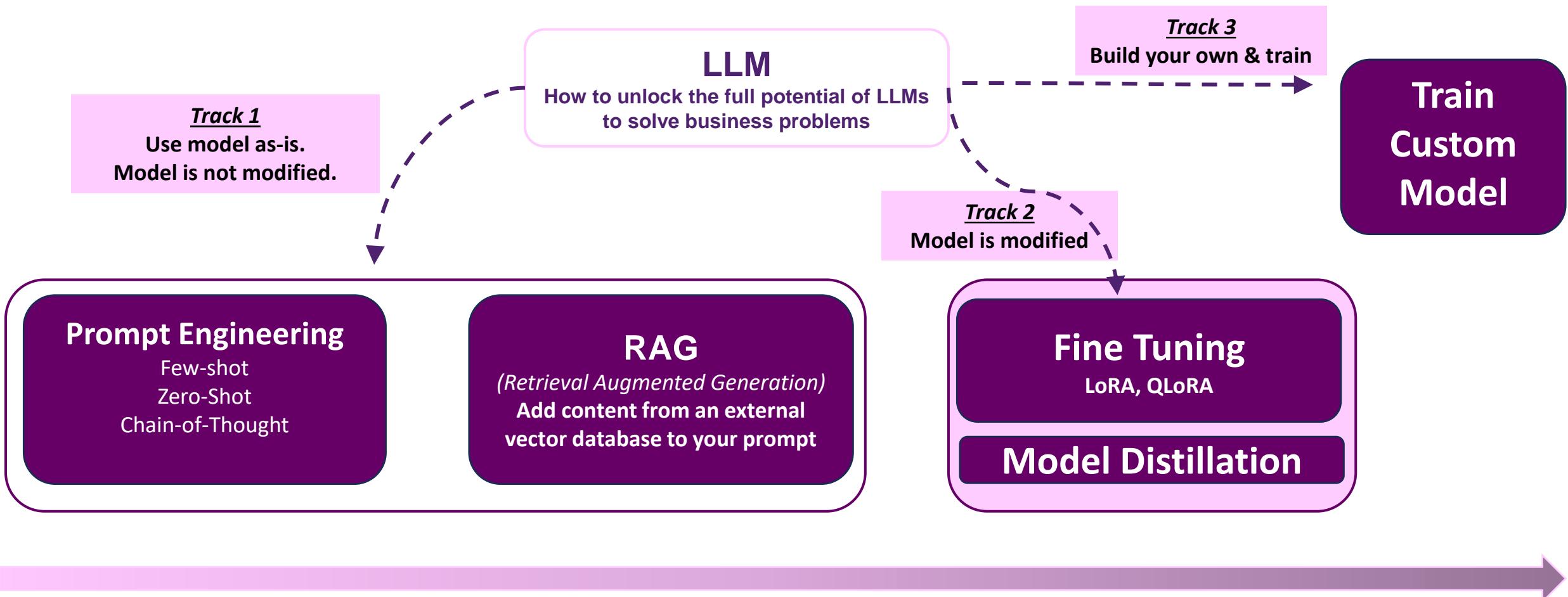
International Law firm (*multiple countries, jurisdictions, business domains*) wants to use LLMs to prepare draft case documents, compare previous cases, new employee Q&A

LLM Foundation Model

- Understand language
- Have knowledge of the world
- Have reasoning capability

- **Lack** law & legal domain knowledge

Framework to adapt LLMs for your business



High Cost
High Complexity
LLM Ops needed
(training, deployment, monitoring, and maintaining of models)

Framework to extend model knowledge and adapt to your task

Track 1

Use model as-is.

Model is not modified.

Prompt Engineering

Few-shot

Zero-Shot

Chain-of-Thought

Prompt engineering is the process of carefully designing and refining the input (the "prompt") given to an AI model to achieve the desired output.

What is a Prompt? A prompt is a combination of requirements, instructions, guardrails combined with data to be acted upon by the LLM.

Use cases include like sentiment analysis, copyrighting, ER extraction, image reasoning, etc.

Prompt engineering is the process of carefully designing and refining the input (the "prompt") given to an AI model to achieve the desired output.

What is a Prompt? A prompt is a combination of requirements, instructions, guardrails combined with data to be acted upon by the LLM.

Anatomy of a Prompt

Style & Tone

Guardrails

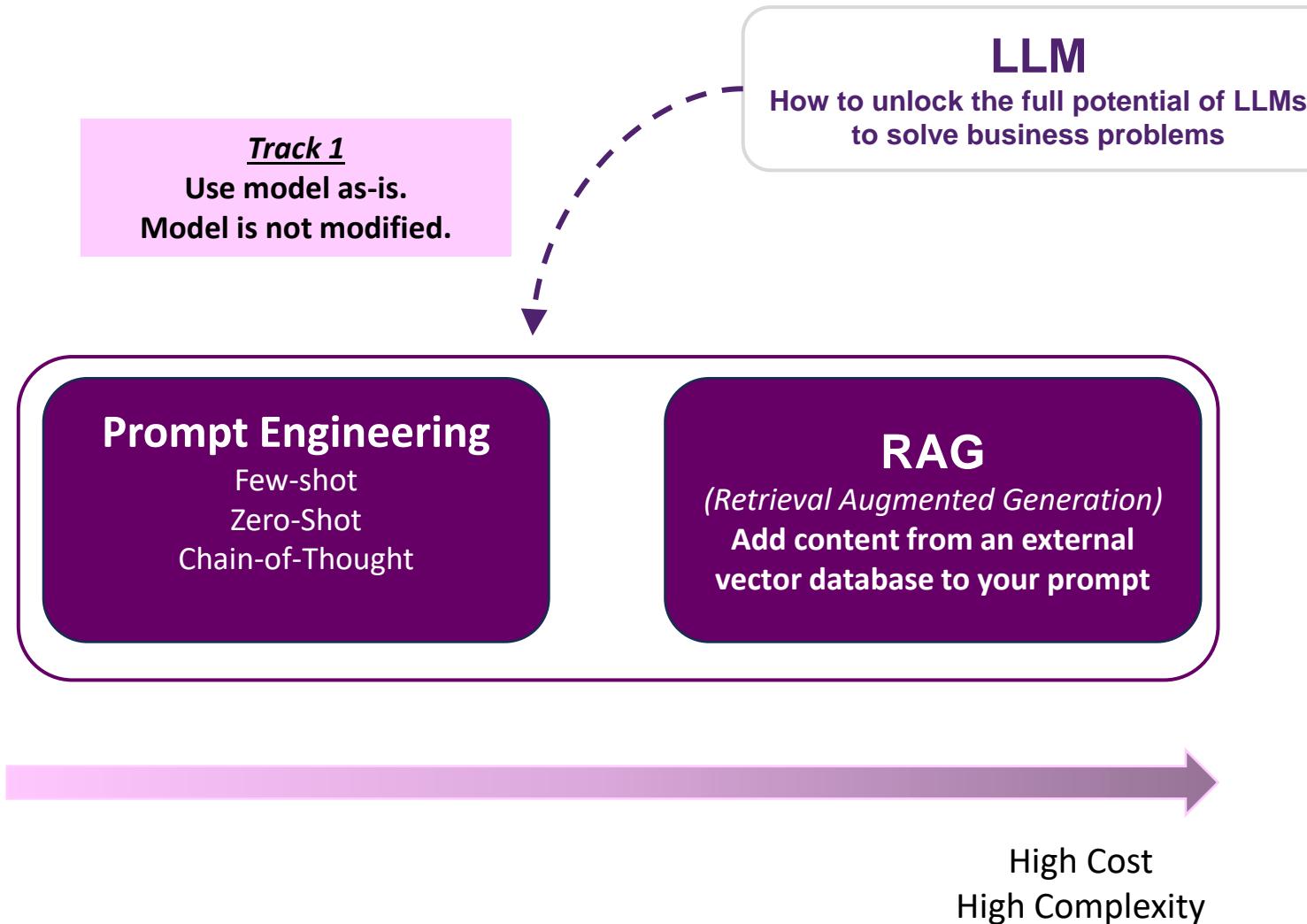
Requirement

Instructions

Output Format

Examples

Framework to extend model knowledge and adapt to your task



Types of Prompts

Zero-Shot

The model predicts the answer given only a natural language prompt with no examples

Use cases

- Language Translation
- Content moderation
- Sentiment analysis

One-Shot

Is a technique where a model leverages a single example to understand and execute a task

Use cases

- Automated content generation
- Document summarization
- Email drafting

Few-Shot

Add few examples to the prompt. The model will adapt results based with in-context learning

Use cases

- Customer support automation
- Content generation
- Data cleaning
- JSON extraction

CoT(Chain-of-Thought)

Guides a model to solve complex problems by explicitly prompting it to follow a step-by-step reasoning process.

Use Cases

- Mathematical problem solving
- Data analysis

Few-shot prompt

SA

You

You are a bank customer service bot.

Style & Tone

Your task is to assess customer intent and categorize customer inquiry after into one of the following predefined categories:

Requirement

change pin

lost card

exchange rate

country support

charge dispute

If the customer inquiry doesn't fit into any of the above categories, classify it as:

Instructions

customer service.

You will only respond with the predefined category. Do not provide explanations or notes.

Output Format

Here are some examples:

Inquiry: When will my credit card arrive? I'm going on a vacation and will not be able to check my mails for few days in first week of May

Examples

Category: card arrival

Inquiry: I am planning an international trip to Mexico. Does the card work there ?Category:

Country support Inquiry: I forgot pin of my credit card. Can you help me reset it ?

Category: Change pin

For the below question coming from a customer what is the service category "My wallet got stolen. It was in my bag at a conference. It had my credit card. What should i do?"

< 8 / 8 > 0

ChatGPT

lost card

Output Format

Chain-of-thought prompt

SA

You

Karen went to the grocery store. She saw mangoes were on Sale and she bought a dozen. She already had 5 mangoes at home. Later that evening her father came to her home and gave her half-a-dozen mangoes. How many mangoes does she have in total. Don't show any code. Lets work this step-by-step

< 2 / 2 >

ChatGPT

Sure, let's calculate how many mangoes Karen has now, step by step.

1. Karen initially had 5 mangoes.
2. She bought a dozen mangoes. A dozen equals 12.
3. Her father gave her half a dozen mangoes later, which equals 6.

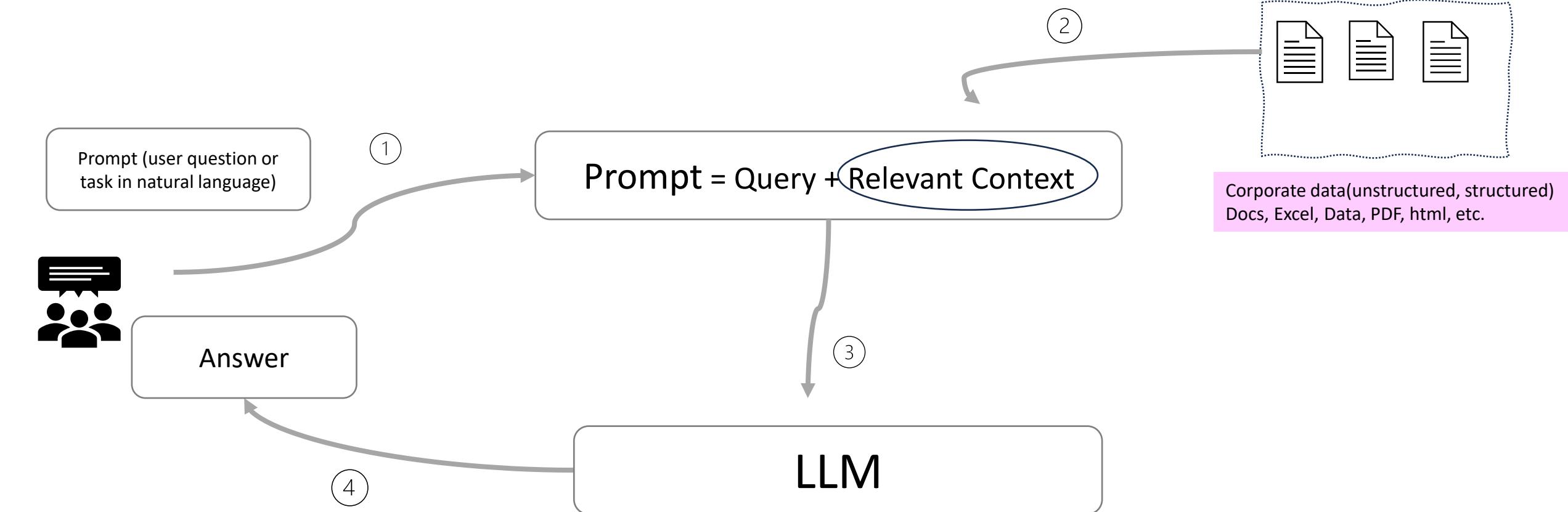
Now, let's add all these together:

- Start with the 5 mangoes she already had.
- Add the 12 mangoes she bought.
- Add the 6 mangoes her father gave her.

That makes a total of 23 mangoes.

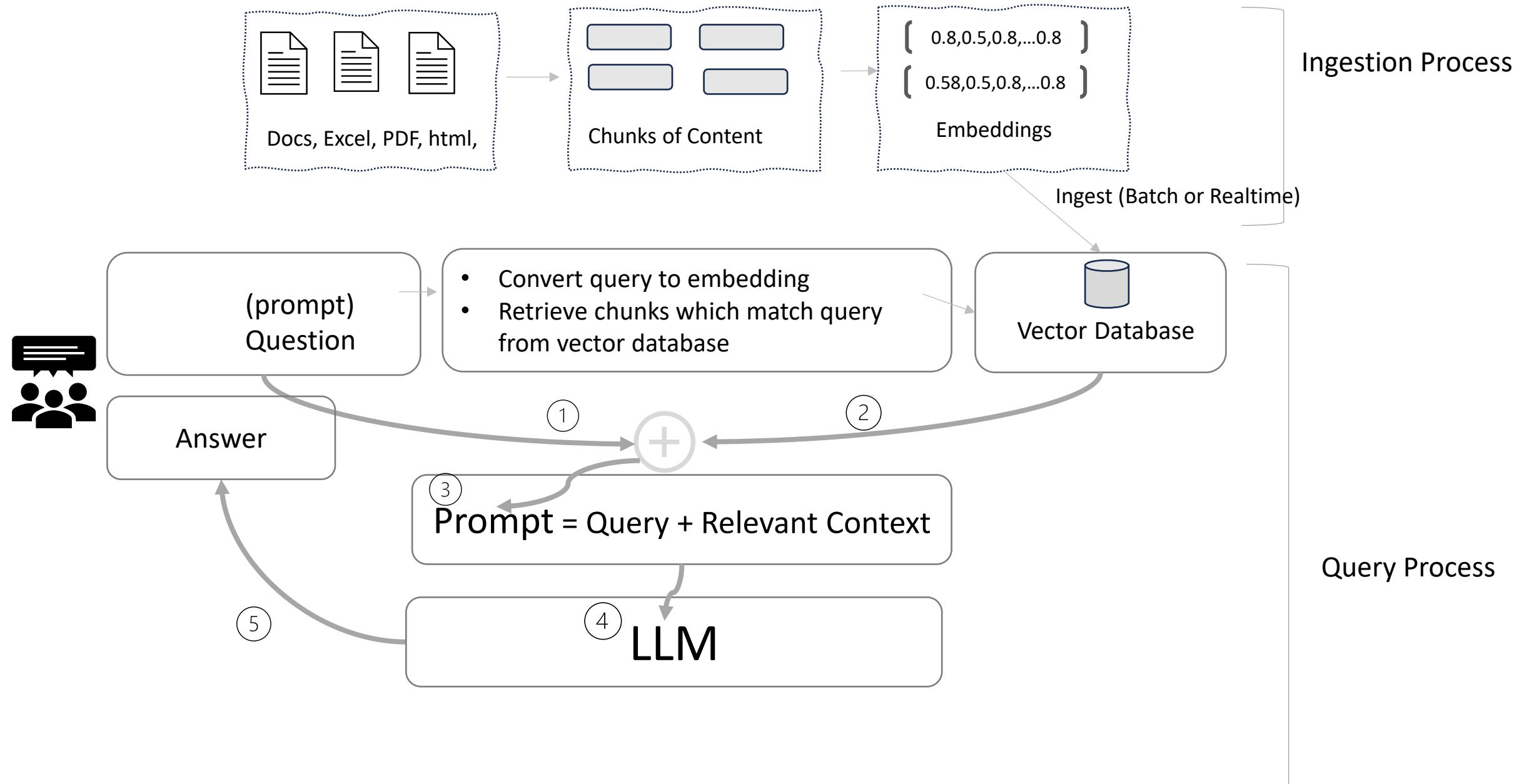
RAG (Retrieval Augmented Generation)

In simple words, RAG is a technique where you combine external content like (business knowledge/data) with a prompt before sending it to the LLM. The LLM then acts & reasons on that to provide you with results. Essentially you are using the AI power of a LLM on your custom knowledge/data.

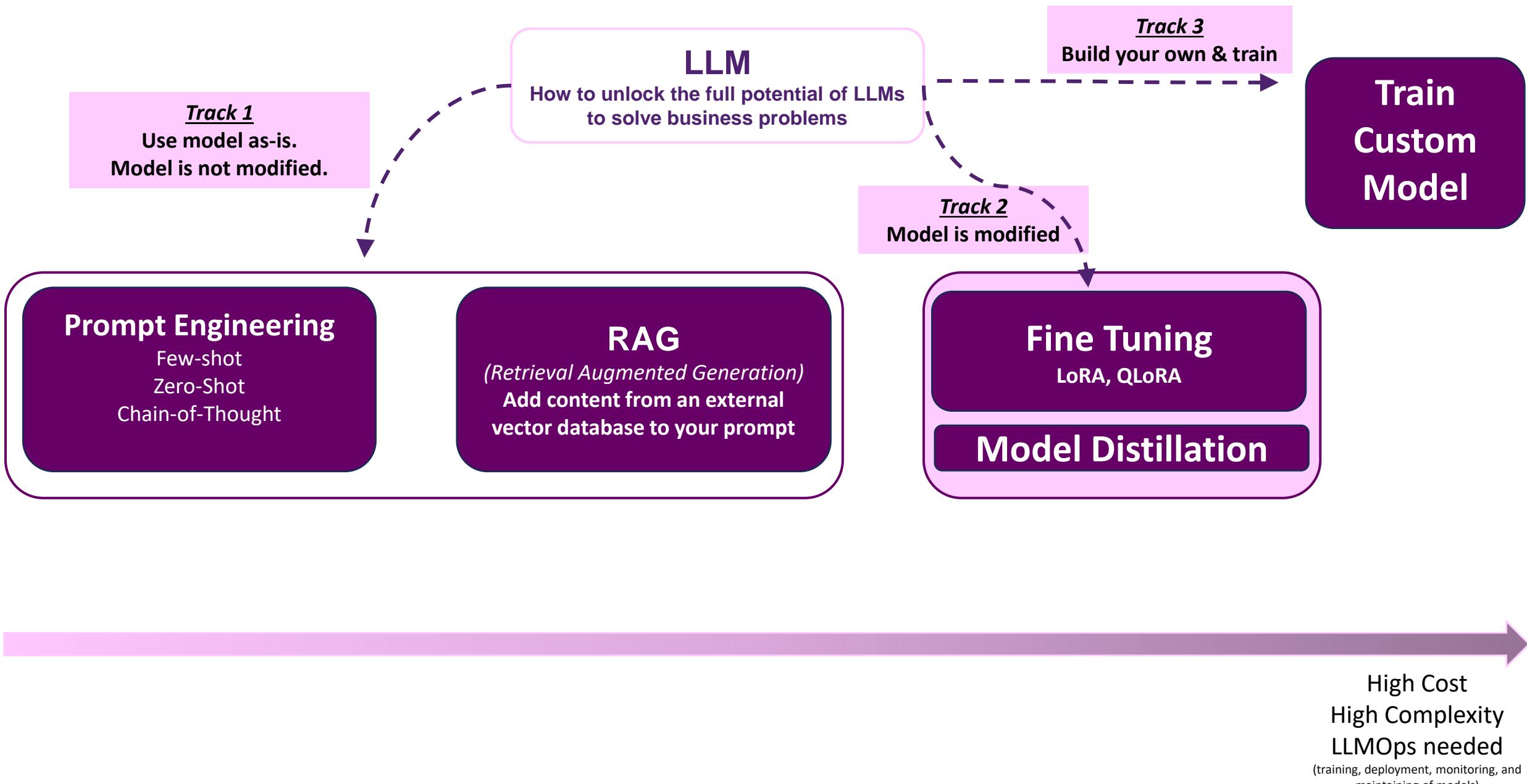


[Watch my video on RAG for more details and a demo](#)

RAG Application Architecture



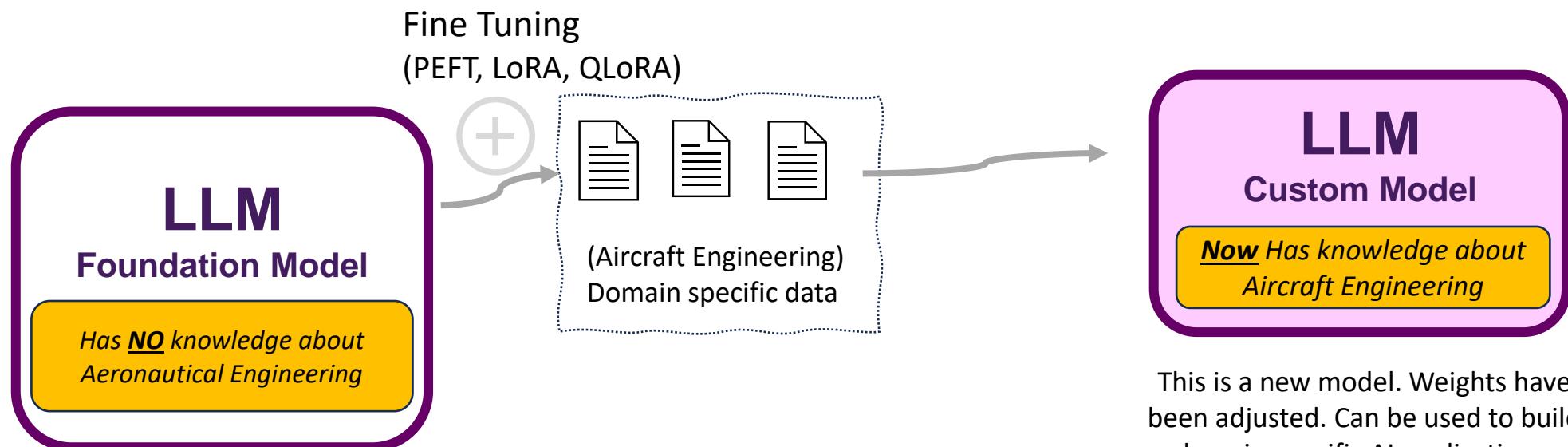
Framework to adapt LLMs for your business



(track 2): Fine Tuning

Fine tuning is a method to train a foundation model with your own business data or domain knowledge. During the training process, the weights are adjusted. After fine-tuning, you can use the custom model it to build applications that are specific to your organization and use cases.

For example, **Boeing** wants to build an AI Assistant which helps train new employees on Aeronautical Engineering.



Aeronautical engineering is a field of engineering that focuses on designing, developing, testing and producing aircraft.

Challenges of Fine-Tuning

Fine-tuning a large foundation model changes the model's weights and can be computationally intensive, expensive and time consuming, making it out of reach for many business.

PEFT (parameter efficient fine-tuning)

Addresses the challenges of full fine-tuning

Parameter Efficient Fine-Tuning (PEFT) refers to a range of techniques used to adapt large pre-trained models to specific tasks with minimal updates to the model parameters. The goal is to retain the benefits of the pre-trained model while customizing it for a particular dataset or task without the need for extensive re-training, which can be costly in terms of computational resources and time. Here we will talk about two such techniques:

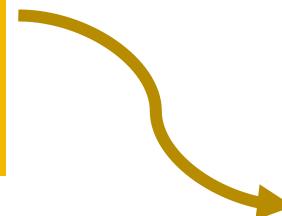
1. LoRA (Low-Rank Adaptation)
2. QLoRA (Quantized Low-Rank Adaptation) are two such techniques.

LoRA: Low-Rank Adaptation

Is a type of efficient fine-tuning technique

Problem statement:

The default (fine-tuning: full weight) for LLMs tends to be expensive, compute-intensive & slow. This becomes a major obstacle for companies to adapt these models for their business use.



How does LoRA it solve it :

LoRA reduces the number of trainable parameters for downstream tasks by freezing the weights of the model and inserting a smaller number of new weights into the model. This makes training with LoRA faster, memory-efficient and less costly. All while maintaining the quality of the model outputs..

LoRA (Freeze weights & insert small number of trainable weights)

Preprocessor: "gemma_causal_lm_preprocessor_1"

Tokenizer (type)	Vocab #
gemma_tokenizer (GemmaTokenizer)	256,000

Model: "gemma_causal_lm_1"

Layer (type)	Output Shape	Param #	Connected to
padding_mask (InputLayer)	(None, None)	0	-
token_ids (InputLayer)	(None, None)	0	-
gemma_backbone (GemmaBackbone)	(None, None, 2048)	2,506,172,416	padding_mask[0][0], token_ids[0][0]
token_embedding (ReversibleEmbedding)	(None, None, 256000)	524,288,000	gemma_backbone[0][0]

Total params: 2,506,172,416 (4.67 GB)
Trainable params: 2,506,172,416 (4.67 GB)
Non-trainable params: 0 (0.00 B)

- Freeze weights
- Insert small number of trainable weights

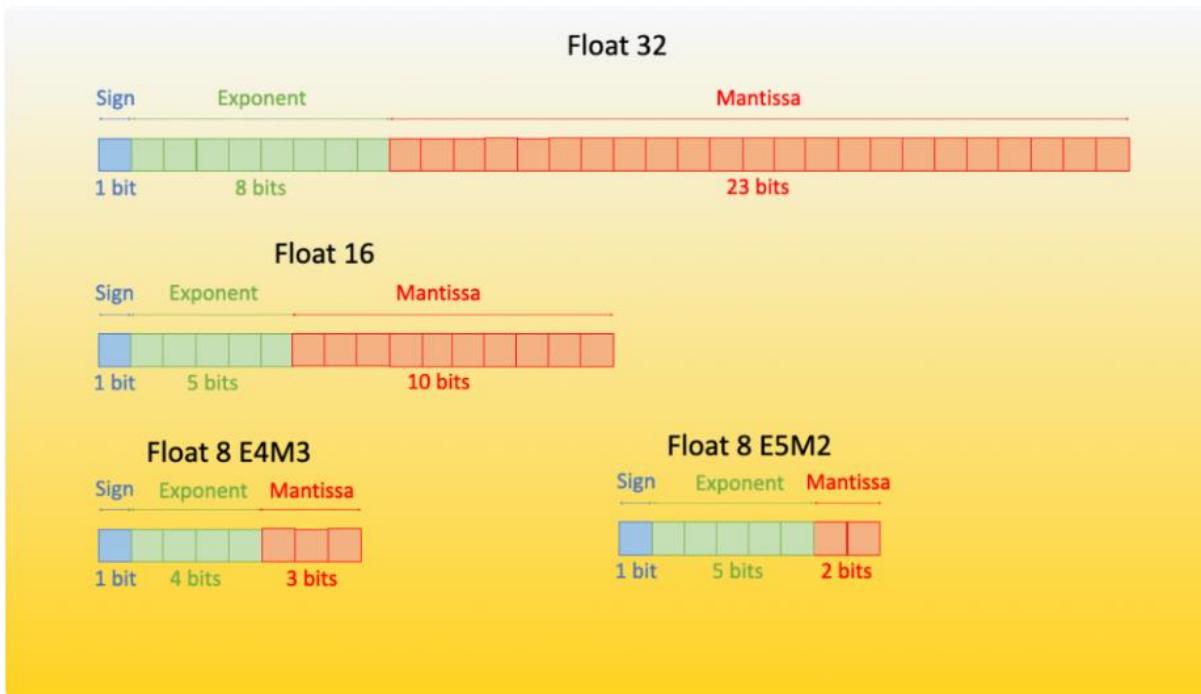
Model: "gemma_causal_lm_1"

Layer (type)	Output Shape	Param #	Connected to
padding_mask (InputLayer)	(None, None)	0	-
token_ids (InputLayer)	(None, None)	0	-
gemma_backbone (GemmaBackbone)	(None, None, 2048)	2,507,536,384	padding_mask[0][0], token_ids[0][0]
token_embedding (ReversibleEmbedding)	(None, None, 256000)	524,288,000	gemma_backbone[0][0]

Total params: 2,507,536,384 (4.67 GB)
Trainable params: 1,363,968 (2.60 MB)
Non-trainable params: 2,506,172,416 (4.67)

QLoRA (Quantized Low-Rank Adaption)

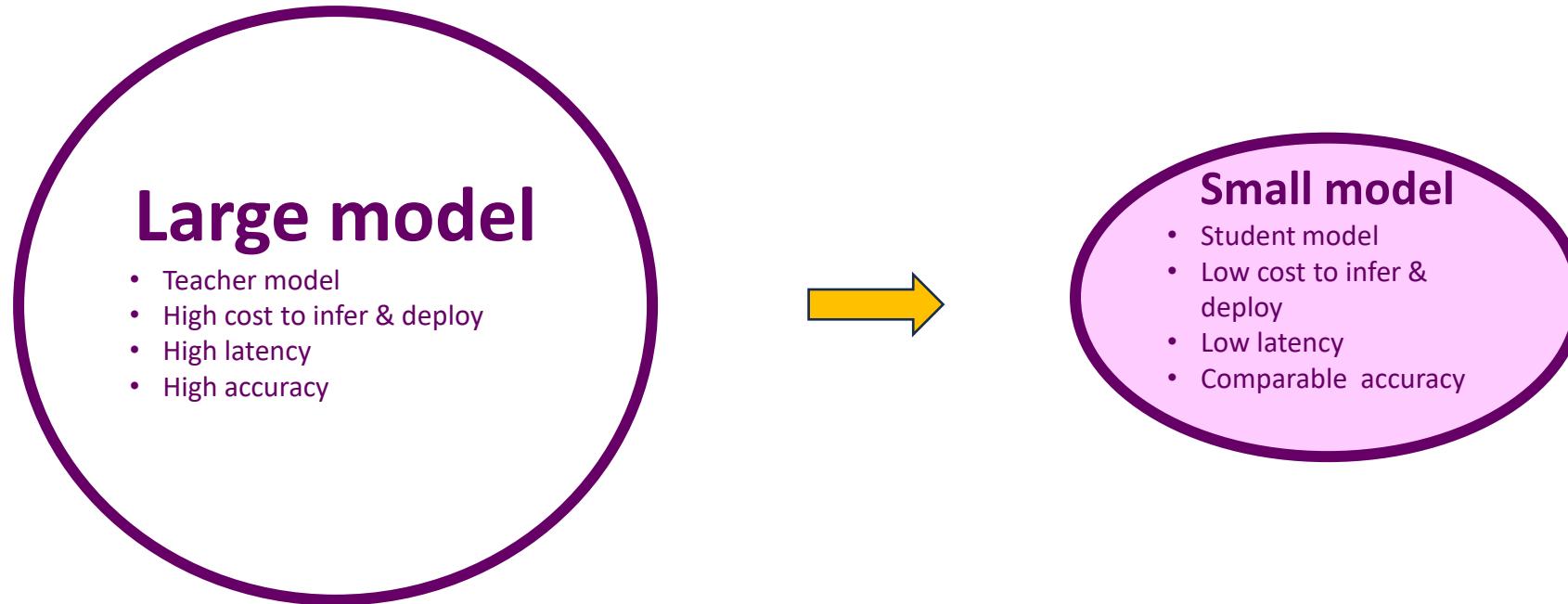
Building on LoRA, QLoRA incorporates quantization into the adaptation process. It uses techniques like 4-bit quantization to further reduce the memory and computational requirements. This quantization applies not just to the low-rank matrices but potentially also to other parts of the model, making the storage and processing of model weights more efficient



Overview of Floating Point 8 (FP8) format. Source: Original content from [sgugger](#)

huggingface.co/blog/4bit-transformers-bitsandbytes

Model Distillation allows you to leverage the outputs of a large model to fine-tune a smaller model, enabling it to achieve similar quality on a specific task. This process can reduce both cost & latency without sacrificing quality on specific tasks. In simple words, here are the steps for model distillation:



(1) Identify Models: identify the teacher and student model. For ex **Llama-3.1 8B** be teacher model & **Llama-3.1 4B** be student model.

(2) Distill dataset: use the teacher model to generate high quality prompt / result dataset. Evaluate for quality. Select only the high-quality dataset.

(3) Model Distillation: Fine-tune the student model using the evaluated distilled dataset

(4) Evaluate student model: Evaluate the quality & performance of the fine-tuned student model to see how it compares to the large model

In some cases, businesses or institutions may need to build and train a purpose-built model from scratch that understands their business, industry, or domain.

- Businesses that have large quantities of proprietary data or are in highly regulated or specialized industries —may want to create their own model from scratch.
- The training process involves teaching the model new knowledge & unique behaviors for these highly specific use cases

complex, unique behaviors for highly specific use cases.

For example, Harvey, an AI-native legal tool for attorneys, partnered with OpenAI to create a custom-trained large language model for case law. While foundation models were strong at reasoning, they lacked the extensive knowledge of legal case history and other knowledge required for legal work. After testing out prompt engineering, RAG, and fine-tuning, Harvey worked with our team to add the depth of context needed to the model—the equivalent of 10 billion tokens worth of data. Our team modified every step of the model training process, from domain-specific mid-training to customizing post-training processes and incorporating expert attorney feedback. The resulting model achieved an 83% increase in factual responses and attorneys preferred the customized model's outputs 97% of the time over GPT-4.